
Technology for Teaching the Rest of Us
Mark Guzdial
School of Interactive Computing

Story
•  Computing is important for more than just those who choose

to major in computing.
•  Who are “they” (“the rest of us”)? What do they want from CS, and why

aren’t they in our classes? How do they now learn CS?

•  Teaching those who do not want to become software
engineers or computer scientists
•  The Story of Computing for All at Georgia Tech.
•  Our problem isn’t enrollment.

• Meeting the needs of “the rest of us” with technology:
1.  Matching or tailoring the context to the person.
2.  How to find what they really want and need.
3.  Teaching CS concepts without apprenticeship.

The typical CS student:  
Future Software Engineer
• To produce reliable,

robust, secure software.
• To work in

interdisciplinary teams.
• To use appropriate

design notations, such as
UML.

• To work in multiple
programming languages.

Taulbee Numbers

2010 CRA Taulbee Survey of PhD-
granting institutions!

Who wants what CS has to offer?
•  Computing is at the core of the modern society and modern

economy.
•  Computing is key to innovation in many disciplines.

• Computer Science has a much larger potential
audience beyond software developers.
• Estimates:

~13 million non-professional programmer/end-user
programmers in US by 2012,
vs.
~3 million professional software developers (Scaffidi,
Shaw, & Myers, 2005)

5

The Two Cultures

An atypical CS student:  
Future computational scientist or engineer

•  To use computation as a tool to
enhance understanding.

•  To write programs of (at most) 100
lines (most often, 10 lines) for
themselves.
•  They care about the products of the

programs, not the programs.

•  To learn as few languages as are
needed for their tasks.

•  To work in interdisciplinary teams,
including software engineers.

An atypical CS student:  
Future high school CS teacher
•  To use code to explore and

understand ideas of
computation.

•  To learn what languages are
necessary to meet standards
and engage students.

•  To work with students with a
wide range of interests.
•  Probably won’t work with professional

software engineers

An atypical CS student:  
Future graphics designer
•  To write programs to improve

their efficiency, and to
implement their dynamic (e.g.,
Web) designs.

•  To do as little coding as
possible.

•  To learn about computing ideas
in order to improve their
process, but with a focus on
people and creativity.
•  Probably won’t work with professional

software engineers

How do meet this need?
• Our track record for the first CS course is

poor.
• 30-50% failure or withdrawal rates (Bennedsen &

Caspersen, 2007)

• Other majors tend to be more female and
more ethnically diverse than the typical
computing student.
• Our track record with these audiences is

particularly poor (Margolis & Fisher, 2003)

Technology can help.  
We should lead.
• As computer scientists (and CS teachers),

we can and should lead in developing using
technology to improve learning.
• Unlike most teachers, we can build our own technology.
• Done well, our solutions may inform other disciplines.

• We need technology to support CS learning for
“the rest of us.”

Three Needs
•  First, the importance of context in teaching

computing.
• Need #1: Match or tailor context to make sense to

students.

• Second, why aren’t the “rest of us” looking to our
classes in CS? Where are they looking?
• Need #2: Help “amateur” (non-CS professional)

programmers find the help they need.

•  Third, teaching CS with less programming.
• Need #3: Create new kinds of instructional materials for a

new pedagogy of computing education.

Piece 1: Teaching  
Computing to Everyone
• Fall 1999:

All students at Georgia Tech must take a course in
computer science.
• Considered part of General Education, like mathematics,

social science, humanities…

• 1999-2003: Only one course met the requirement.
• Shackelford’s pseudocode approach in 1999

• Later Scheme: How to Design Programs (MIT Press)

One-class CS1: Pass (A, B, or C) vs.  
WDF (Withdrawal, D or F)
Success Rates in CS1 from Fall 1999 to
Spring 2002 (Overall: 78%)

Architecture 46.7%
Biology 64.4%
Economics 53.5%
History 46.5%
Management 48.5%
Public Policy 47.9%

Contextualized Computing Education
• What’s going on?

•  Research results: Computing is “tedious,
boring, irrelevant”

•  Since Spring 2003, Georgia Tech
teaches three introductory CS
courses.
•  Based on Margolis and Fisher’s

“alternative paths”
•  Each course introduces computing

using a context (examples, homework
assignments, lecture discussion)
relevant to majors.
•  Make computing relevant by teaching it in

terms of what computers are good for
(from the students’ perspective)

16

Our Three CS1’s Today
• CS1301/1321 Introduction to Computing

Traditional CS1 for our CS majors and
Science majors (math, physics, psychology,
etc.). Now, uses robots.

• CS1371 Computing for Engineers
CS1 for Engineers. Same topics as
CS1301, but using MATLAB with
Engineering problems.

• CS1315 Introduction to Media
Computation for Architecture,
Management, and Liberal Arts students.

Media Computation:  
Teaching in a Relevant Context
• Presenting CS topics with

media projects and
examples
•  Iteration as creating negative

and grayscale images
•  Indexing in a range as removing

redeye
• Algorithms for blending both

images and sounds
• Linked lists as song fragments

woven to make music
•  Information encodings as sound

visualizations

17

def negative(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

def clearRed(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

def greyscale(picture):
 for p in getPixels(picture):
 redness=getRed(p)
 greenness=getGreen(p)
 blueness=getBlue(p)
 luminance=(redness+blueness+greenness)/3
 setColor(p, makeColor(luminance,luminance,luminance))

19

Open-ended, contextualized homework  
 in Media Computation CS1 & CS2

Sound collage

Linked list canon!

Results:CS1“Media Computation”

!"#$%&' !!#("&'!$#%)&' !*#!%&'*)#*$&' !%#+&&'!&#((&' !,#*&&'%%#$"&'

),#+$&')&#,%&')$#"+&' *#(%&' %#+!&'))#$)&')*#"+&')%#)&&',,#+$&'

-./01
2011&(

2340135
2011&(

60135
2011&(

-./01
78&$

2340135
78&$

60135
78&$

-./01
2011&$

2340135
2011&$

60135
2011&$

9:2
;055

Change in Success rates in CS1 “Media
Computation” from Spring 2003 to Fall
2005
(Overall 85%)
Architecture 46.7% 85.7%
Biology 64.4% 90.4%
Economics 54.5% 92.0%
History 46.5% 67.6%
Management 48.5% 87.8%
Public Policy 47.9% 85.4%

Was the class successful?
•  Interviewed Intl Affairs student (female): “I just wish I had

more time to play around with that and make neat effects.
But JES [IDE for class] will be on my computer forever, so…
that’s the nice thing about this class is that you could go as
deep into the homework as you wanted. So, I’d turn it in and
then me and my roommate would do more after to see what
we could do with it.”

• Survey one year later:
•  19% of respondents had programmed since class ended

•  "Did the class change how you interact with computers?”
•  “Definitely makes me think of what is going on behind

the scenes of such programs like Photoshop and
Illustrator.”

Results at Other Schools

•  Similar retention results at 2
year public Gainesville College
(Tew, Fowler, Guzdial, SIGCSE
2005) and at (much more
diverse) U. Illinois-Chicago’s
CS0.5 (Sloan & Troy, SIGCSE
2008)

•  Would you like more CS?
•  GT 15.2% “Strongly Disagree.”

<25% agree.
•  More MediaComp? GT and

Gainesville over 40% agree.

(Tew, Fowler,
Guzdial,
SIGCSE
2005)

Results at  
University of California, San Diego
• Using Java Media

Computation as normal CS1
for CS majors at a research
university.

• Did extensive data collection
last semester before
switching to Media
Computation.

• Been following two cohorts
of CS1 students for
comparison.

Simon, Kinnunen, Porter, Zaskis,
ACM ITICSE 2010

Findings:!
•  MediaComp has
more focus on
problem-solving, less
on language. "
!
•  MediaComp
students have higher
pass rates and
retention rates one
year later!

24

A Contextualized CS2:  
MediaComp Data Structures

How did the
Wildebeests charge

over the "
ridge in Disney's
"The Lion King"?!

Research Question:  
Is context still useful in a second course?
• Mixed model research design

•  Interviews informing whole-class survey

•  11% agreed with “Working with media is a waste of time that
could be used to learn the material in greater depth.”
•  “I didn’t take this class to learn how to make pretty pictures.”

•  A majority of the class (70%) agreed or strongly agreed that
working with media makes the class more interesting.

•  67% of the students agreed or strongly agreed that they were
really excited by at least one class project

•  66% reported doing extra work on projects to make the
outcome look “cool.”

(Yarosh and Guzdial, JERIC,
Jan 2008)

Introducing Computing in an  
Engineering Context

•  Developed in collaboration with
Civil, Mechanical, and Aerospace
Engineering.

•  Uses Engineering problems and
MATLAB

•  Covers traditional CS1 topics

•  Among our 3 CS1’s, these are the
first students to program outside
of class.

•  The success rate in this class also
rose compared to all-in-one.

Comparing Spring 2004
CS for Engineers: ~1200 students/semester!
Media Comp: ~300 students/semester!
CS for CS majors: ~150 students/semester!

A Context for CS1 for  
CS majors: Robotics
• Microsoft Research has

funded the Institute for
Personal Robotics in
Education
•  Leads: Tucker Balch, Deepak Kumar,

Doug Blank
•  Joint between Bryn Mawr College and

Georgia Tech
•  http://www.roboteducation.org

• Developing a CS1 with
robotics as the context.

Need #1: Finding or Making Context
• Context is important.

• It works to support success and engage students.
• But, there is no universally successful context.

• At Georgia Tech, there are continued demands for finer
granularity (e.g., business, biology).

 CS Teaching Need #1:
Help students and teachers to match interests
and abilities to contextualized educational
material, or
From a general form, instantiate template into a
given context (e.g., sampling, sorting, searching)

CS Need #1: Matching or Tailoring
• Matching students to existing contextualized

content.
• What variables are important? Level, major,

desired degree, previous background.
• More than a search engine.

• Tailoring content from descriptions of context-
specific features to learning objectives.
• Pixels in pictures and samples in sounds:

Sampling
• Discrete event simulation queues: Sorting

Piece 2: Do they want what  
we have to offer?
•  Brian Dorn studied graphics

designers who program.
•  Conducted a series of

interviews and assessment
activities.

•  Found that these subjects
want more computer
science, but don’t find
courses (and most other
resources) adequate (Dorn
& Guzdial, ICER 2010)

• P10: So, that was a
really long way of saying
yes, I think that an
academic study would
make me a better
programmer, but not by
a whole lot.

What do software engineers do? 
Answer: The Boring Stuff.
•  P2: I was able to take different samples from different places

and instead of just being let's say an MIS major, or computer
science major, you know it's—you're not going to be front-end
anything with computer science. You're going to be back-end
everything.

•  P4: I think as a front-end developer, you focus more on the
design and the usability, and you're focusing more on the
audience. And then on the back-end I think you're focused on
more, these are like the software developers. And they're
programming something, and they don't really see what it's
gonna look like; they're just making it work.

Why don’t they take CS classes?
•  P7: I started out in computer science, but didn't like it at all. The fact that I

wasn't learning anything new. I took an intro to programming course, and
then I talked to some other people in the program and it was all repetition
and I guess there wasn't any really new. So you weren't really learning any
concepts. You were learning the languages, and I didn't like that at all. So
that's why I left…

• Do we just teach languages?
Why don’t they see the concepts?

33

They are not afraid of coding
•  “What interests you about web design?”
• P12: The coding! I don't like to code. But the things

that the code can do is amazing, like you can come
up with this and voila, you know, it's there. Javascript
for one. The plugins and stuff. I think that's very
interesting, intriguing and stuff. Because I mean like
the code is just, there's so much you can do with
code and stuff. It's just like wow.

They’re Lost without Initial Knowledge
•  They learn from websites, reading lots of code,

books where they can, friends.
• Rarely courses.

• Surprising tidbit: Learning less than they might
because of a lack of deep knowledge.
• For example: Exploring code by searching Google for

function and variable names.

• Brian’s experiment: Given a case library with
conceptual information vs. a code repository alone,
what gets learned, used, and liked? (ICER 2011)

36

Need 2: Interpreting Code for Search

• Patterns to recognize: (simple) recursion,
sorting, linked lists, API use.

• Tagging of examples?
• Machine learning approach: Given code X in

IDLE or Eclipse, what search terms led to
fruitful (defined?) results?

CS Teaching Need #2:
Given a piece of code, suggest CS concepts and
examples, or productive/appropriate search terms.

Piece 3: Teaching CS as a study,  
not just an apprenticeship
•  For the most part, we teach CS as apprenticeship.

• We model (lecture), students practice (code),
we try to coach.

• Practice is always important.
Do we rely on it too much?
• Are we more like STEM or Architecture?

• Claim: No other science and engineering field
teaches so much through practice.
• Result: CS learning is hard and time-consuming.

Can we teach more of CS 
without programming?
• Can we teach about variables behavior, how loops

work, how conditionals behave – without a half hour
of “where goes the semi-colon”?
• Matt Jadud [2006] (and others) has shown us how

small Java errors can lead to an enormous waste
of time.

• Can we reduce the wasted time?
• Analogy: Does coursework in a foreign language

make it easier to be immersed in the new
language, or is immersion the only way to learn?

Problem: Too little secondary school
CS

US NSF’s Solution: CS:P => CS10K
• First, create a new, high-quality course that

attracts students and can be taught nationally
– that reduces the focus on programming.
• http://www.csprinciples.org

• Secondly, have 10,000 teachers ready and

able to teach this course in 10,000 schools by
2015: CS10K

How do we get there?

• From 2,000 to 10,000 teachers in four
years?
Where are we going to get 8,000 more
teachers?

• Two options in US Teacher Education:
• Pre-service
• In-service

Claims
• Claim: They are not going to come from pre-service

teacher education.
• UTeach at U-T@Austin has offered pre-service CS ed for 15

years, with only 7 graduates.
• Purdue has a program, with only one teacher enrolled.
• Using pre-service to ramp-up an area doesn’t work:

The student-teaching problem.

• Claim: We have to do in-service CS teacher
education a whole lot better.
• Experiences at Columbus State in Georgia.

Studying the issues of 
In-service CS Teacher Education
• Study of adult/professional students in CS

classes.
• They don’t have the time to spend hours in front

of the IDE.
• Lacking background, e.g., in mathematics.
• They get stymied by small errors.

Options?
• If we want to have thousands of high

school students studying CS, we have
two options:
• Option #1: Give up on teachers
• Option #2: Figure out a pedagogy that

works for in-service teachers.

Option 1: Don’t Use
Teachers

•  Dave Patterson (Berkeley) and Alan Kay:
Use Technology Instead.

•  “My belief that the K-12 CS education problem is practically
unsolvable for the next 10-20 years in the US is based on:
1.   No room in the high-school curriculum for CS.
2.   Low pay for new teachers.
3.   Changing education policy is hard and takes a long time,

and there is little reason to believe you will succeed.!This
is a state by state, school district by school district level of
change involving many advocacy groups.

4.   Most proposed solutions don’t scale.!There are roughly
50,000 high schools and 80,000 elementary schools and
middle schools in the US. Whatever you are proposing,
think about the time scale your innovation would take to
affect 10% of these schools.”

Option #2: Figure out a new way  
to teach high school CS teachers

• Given a focus on in-service teachers:
• It must be distance education to fit with

schedules.
• Learning must happen primarily in 20-60

minute chunks.
• Sounds like an Open University problem.

• Does a complete solution for creating secondary
school CS teachers already exist that the US could
import? And use for 8K teachers in 4 years?

Role 3: Re-Think the Way We  
Teach CS.
•  Could we build technology (e.g., cognitive tutors) to teach all

of CS:Principles without teachers?
•  Or can we build technology to guide teacher learning with less

programming?
•  Where “book” study can reduce wasted time in front of IDE
•  Challenge: Not rote memorization, not boring, and usable by teacher

with little knowledge.
•  A little educational psychology can go a long way.

CS Teaching Need #3:
Create materials that support the learning of
computing concepts reducing the hours spent
programming.

Conclusions
•  Computing is important for everyone.

•  Students who want computing succeed with contexts.

•  Need #1: Match students to contextualized materials, or develop the
ability to tailor materials.

•  End-user programmers want what CS has to offer, and there
are more of them than there are professional software
developers. But they don’t know CS.
•  Need #2: Support discovery and development of base knowledge.

•  Teach CS with less apprenticeship, less programming.

•  Need #3: Provide new approaches to learning CS to support learning of
concepts so that time spent programming is fruitful, not wasteful.

With thanks to our supporters
• US National Science Foundation

•  Statewide BPC Alliance: Project “Georgia Computes!” http://www.gacomputes.org
•  CCLI and CPATH Grants

• Microsoft Research

• Georgia Tech's College of Computing

• Georgia’s Department of Education

• GVU Center,

• GT President's Undergraduate Research Award,

• Toyota Foundation

Thank you!
•  http://www.cc.gatech.edu/~mark.guzdial

http://home.cc.gatech.edu/csl

http://www.georgiacomputes.org

For more on the new APCS.
•  http://www.csprinciples.org

For more on MediaComp
approach:

•  http://www.mediacomputation.org

